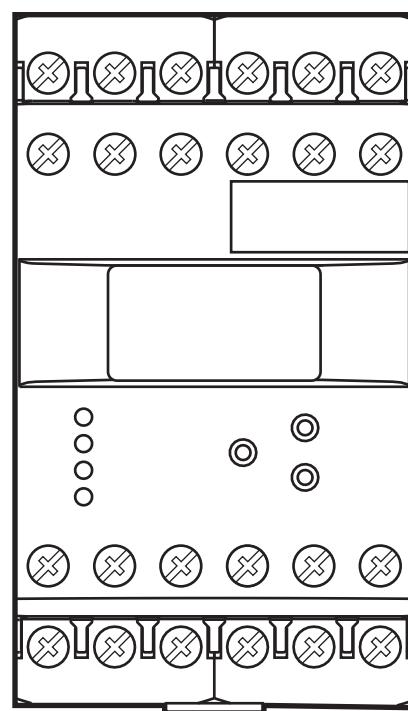


CE


Operating instructions

ecomat200[®]

Monitor
FD-1

UK

7390956 / 00 01 / 2013

Contents

1	Preliminary note	4
1.1	Symbols used	4
1.2	Warning signs used	4
2	Safety instructions	5
2.1	General	5
2.2	Target group	5
2.3	Electrical connection	5
2.4	Operation	5
2.5	Location	6
2.6	Housing temperature	6
2.7	Tampering with the device	6
3	Functions and features	6
4	Operating and display elements	8
4.1	Display stand-by mode	9
5	Installation	9
5.1	Installation of the device	9
5.2	Mounting of the sensors	9
6	Electrical connection	10
6.1	Terminal connection	10
6.2	Voltage supply (power)	10
6.2.1	AC supply	10
6.2.2	DC supply	10
6.3	Inputs	11
6.3.1	Connection of the sensors (In1, 2)	11
6.3.2	Reset inputs (reset 1 and 2)	11
6.3.3	Typical input circuit F...-x	12
6.4	Outputs	13
6.4.1	Relay outputs (Out1, 2)	13
6.4.2	Transistor outputs (Out1, 2)	13
7	Navigation and parameter overview	14
7.1	System parameters	15
7.1.1	FO1	15
7.1.2	FO2	15

7.1.3 SOx	16
7.1.4 ST1	16
7.1.5 SC1	16
7.1.6 NC1	17
7.1.7 EVM	17
7.1.8 DIM	18
7.1.9 VER	18
7.2 Application parameters	18
7.2.1 CT1	18
7.2.2 DTx	18
7.2.3 FTx	18
7.2.4 SP2	19
7.2.5 HY2	19
7.2.6 ST2	19
8 Programming	20
8.1 Programming example DT1 (Delay Time, output 1)	20
8.2 Notes on programming	21
8.2.1 RUN mode	21
8.2.2 Time Out function	21
8.2.3 Numerical entries	21
8.2.4 Factory Reset	22
8.2.5 KEY function (locking)	22
9 Test mode	22
9.1 Activate the test mode	22
9.2 Terminate the test mode	22
9.3 Test parameters	23
10 Scale drawing	24
11 Technical data	24
11.1 Overview	24
11.2 Approvals / standards	25
12 Maintenance, repair, disposal	25

1 Preliminary note

This document is part of the device and contains information about the correct handling of the product.

This document is intended for specialists. These specialists are people who are qualified by their training and their experience to see risks and to avoid possible hazards that may be caused during operation or maintenance of the device.

Read this document before use to familiarise yourself with operating conditions, installation and operation. Keep this document during the entire duration of use of the device.

Adhere to the warning notes and safety instructions.

1.1 Symbols used

- ▶ Instructions
- > Reaction, result
- [...] Designation of keys, buttons or indications
- Cross-reference
- Important note
Non-compliance can result in malfunction or interference.
- Information
Supplementary note.

1.2 Warning signs used

WARNING

Warning of serious personal injury.
Death or serious irreversible injuries may result.

CAUTION

Warning of personal injury.
Slight reversible injuries may result.

NOTE

Warning of damage to property.

2 Safety instructions

2.1 General

Follow the operating instructions. Non-observance of the instructions, operation which is not in accordance with use as prescribed below, wrong installation or incorrect handling can affect the safety of operators and machinery.

The installation and connection must comply with the applicable national and international standards. Responsibility lies with the person installing the device.

2.2 Target group

The device must only be installed, connected and put into operation by a qualified electrician.

2.3 Electrical connection

Disconnect the unit externally before handling it. Also disconnect any independently supplied relay load circuits.

Make sure that the external voltage is generated and supplied according to the requirements for safe extra-low voltage (SELV) since this voltage is supplied without further measures near the operating elements and at the terminals for the supply of connected sensors.

The wiring of all signals in connection with the SELV circuit of the device must also comply with the SELV criteria (safety extra-low voltage, safe electrical isolation from other electric circuits).

If the externally supplied or internally generated SELV voltage is externally grounded, the responsibility lies with the user in accordance with the applicable national installation regulations. All statements in this manual refer to the unit the SELV voltage of which is not grounded.

It is not allowed to supply external voltage to the terminals for the pulse pick-up supply. The consumption of current which exceeds the value given in the technical data is not allowed.

An external main switch must be installed for the unit which can switch off the unit and all related circuits. This main switch must be clearly assigned to the unit.

2.4 Operation

Be careful when handling the unit once power is applied. This is only allowed by qualified personnel due to the protection rating IP 20.

The design of the unit corresponds to the protection class II except for the terminal blocks. Protection against accidental contact (finger protection to IP 20) for qualified personnel is only guaranteed if the terminal screw has been completely screwed in.

2.5 Location

For the correct operation the unit must be mounted in a housing (protection rating IP 40 or higher) which can only be opened using a tool or in a locked control cabinet.

The device has been tested for an impact energy of 1 joule according to EN61010.

2.6 Housing temperature

As described in the technical specifications below the device can be operated in a wide ambient temperature range. Because of the additional internal heating the operating elements and the housing walls can have high perceptible temperatures when touched in hot environments.

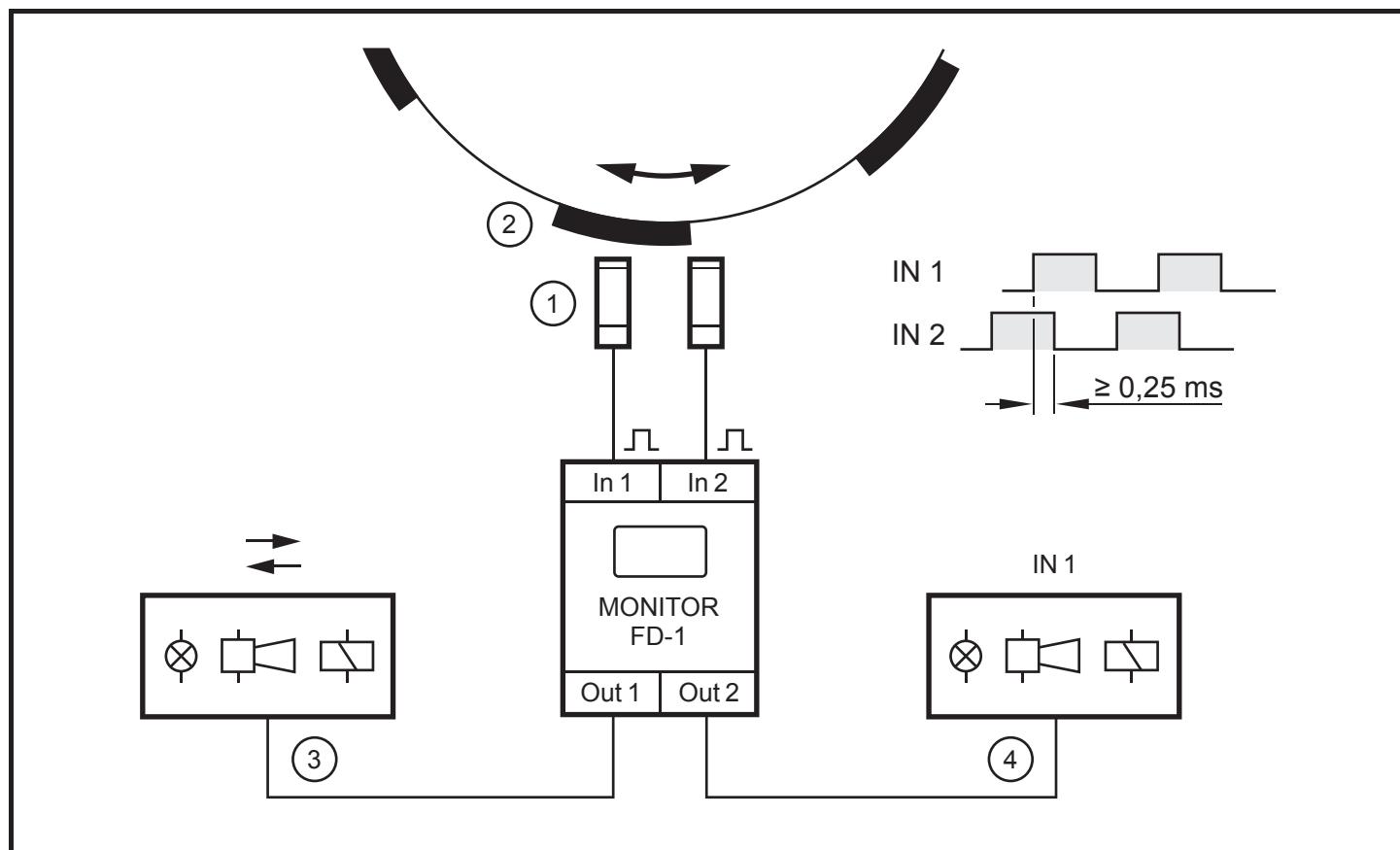
2.7 Tampering with the device

In case of malfunction of the unit or queries please contact the manufacturer. Any tampering with the device can seriously affect the safety of operators and machinery. This is not permitted and leads to the exclusion of any liability and warranty claims.

3 Functions and features

The FS-1 monitor is a pulse evaluation system for direction and speed monitoring.

Direction monitoring


The monitor receives pulses from external pulse pick-ups via 2 separate input channels and evaluates the pulse shifts (pulse sequence IN 1 before IN 2 or the other way round). Output 1 is switched according to the set parameters.

The parameters can be set so that the preset direction is either left-hand movement or right-hand movement.

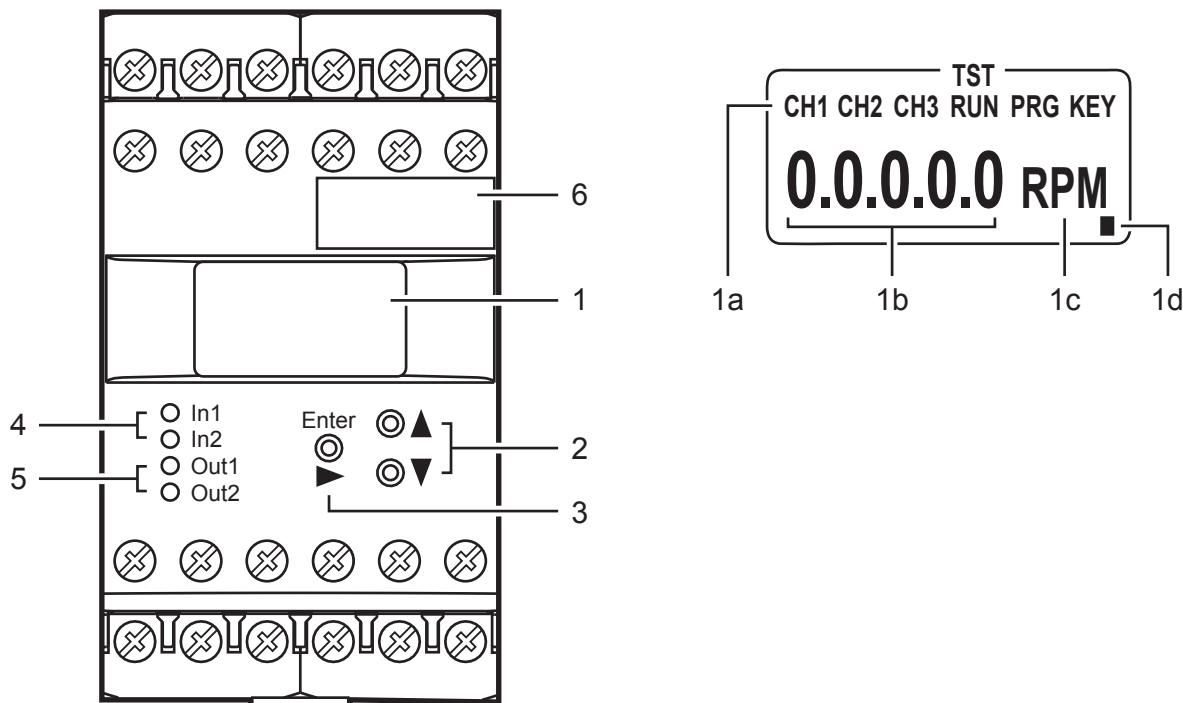
When the preset direction is detected, the output relay energises and the transistor output switches (status signal). When the opposite direction is detected, the relay de-energises and the transistor output is blocked (error message).

Speed monitoring

The monitor compares the input frequency on input 1 with the set switch point SP2 (speed in RPM or HZ) and switches output 2 in accordance with the set parameters.

Direction and speed monitoring

- 1: pulse pick-ups
- 2: switching cams
- 3: switching output 1, direction monitoring (IN 1 before IN 2 or IN2 before IN 1)
- 4: switching output 2, rotational speed monitoring (IN 1)


! The input pulses must be phase-shifted and overlap for min. 0.25 ms.

! WARNING

The device is not approved for safety-related tasks in the field of operator protection.

Using an electrical connection of the outputs from two or more units to achieve a redundant circuit, they can also be used for safety-related tasks. All applicable technical standards must be followed.

4 Operating and display elements

1	OLED display	
1a	Indicators for input channels and operating modes	
	CH...	Input channels
	RUN	Run mode (normal operating mode)
	TST	Test mode (check of the switching characteristics without pulse pick-up connected)
	PRG	Programming mode (setting of the parameter values)
	KEY	Locking
1b	Actual values and parameter values (5-digit, numerical)	
	Rotational speed	0...60,000 RPM
	Pulses	0.1...1,000.0 Hz
	Rotational direction	ODIR = no rotational direction or pulse sequence detected 1DIR = IN 1 before IN 2 2DIR = IN 2 before IN 1
	Outside the value ranges the display shows "----".	
1c	Parameter abbreviation and units (3-digit, alphanumeric)	
1d	Display is in stand-by mode, no values visible (→ 4.1)	
2	[▲] and [▼] buttons	
	Selection of the actual value display, parameter selection, setting of the parameter values	

3	[Enter/▶] button Selection of the operating mode, acknowledgement of the parameter value, front reset	
4	LEDs In1/2 (yellow)	Input pulses
5	LEDs Out1/2 (green)	Switching status of the outputs 1 and 2
	Off	Output is not switched. (relay de-energised, transistor blocked)
	on	Output is switched. (relay energised, transistor switched)
	Flashing quickly	Output is kept latched. (parameter SOx, Store Output)
Flashing slowly	The delay time has an effect on the output. The output switches when the delay time has elapsed and the trigger event is still present (parameter DTx, Delay Time).	
6	Panel for labelling	

UK

4.1 Display stand-by mode

If no button is pressed for more than 10 minutes, the device changes to the stand-by mode. Values and units are no longer visible.

The stand-by mode can be identified by a flashing rectangle.

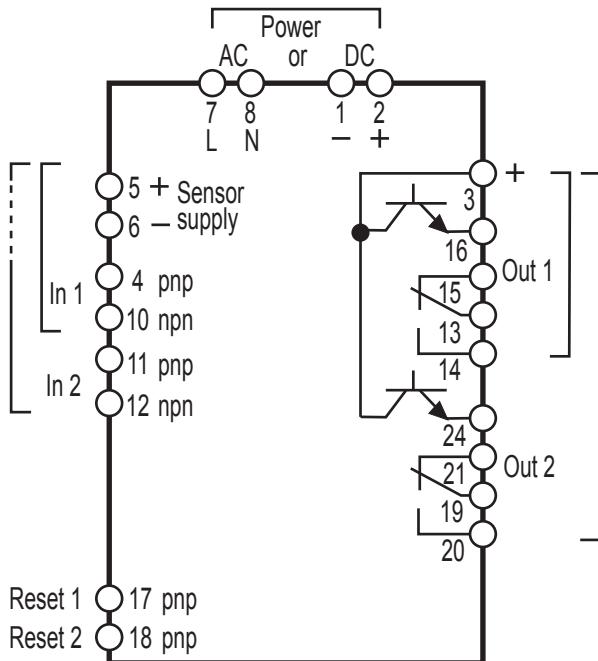
Even if no values and units are visible, the device continues its monitoring function on the basis of the set parameters and switches the relay and transistor outputs accordingly.

Press any button to switch the display on again.

5 Installation

5.1 Installation of the device

- ▶ Install the device on a 35 mm DIN rail.
- ▶ Leave enough space between the unit and the top and bottom of the control cabinet to enable air circulation and to avoid excessive heating.
- ▶ Take into account the internal heating of all units when mounting several units side by side. The environmental conditions must be observed for every unit.


5.2 Mounting of the sensors

- ▶ Follow the manufacturer's installation instructions.

6 Electrical connection

6.1 Terminal connection

Monitor FD-1

Terminal connection

⚠️ WARNING

Do not use unconnected terminals such as terminal 9 as support point terminal.

6.2 Voltage supply (power)

- ▶ Voltage supply see type label.
- ▶ The device may only be operated using one of the possible voltage connections, i.e. either terminals 7/8 (AC) or terminals 1/2 (24 V DC).
- ▶ All supply and signal cables must be laid separately. Use a screened cable if required in the application.

6.2.1 AC supply

- ▶ The AC supply cable must be protected according to the cross-section used (max. 16 A).

If the unit is supplied on AC, the low voltage provided for the sensor supply meets the SELV criteria according to EN 61010, overvoltage category II, soiling degree 2.

6.2.2 DC supply

- ▶ The SELV criteria (safety extra-low voltage) must be met for the DC supply.

- The DC supply cable L+ (terminal 2) must be protected externally with a 315 mA T fuse (5 x 20 mm or similar).

The DC supply terminals are directly connected to the sensor supply terminals.

6.3 Inputs

6.3.1 Connection of the sensors (In1, 2)

Connection of the sensors

! The connection of mechanical switch contacts is not recommended since they tend to bounce and produce faulty pulses.

The terminals 5/6 can be used for the sensor supply or for the reset inputs.

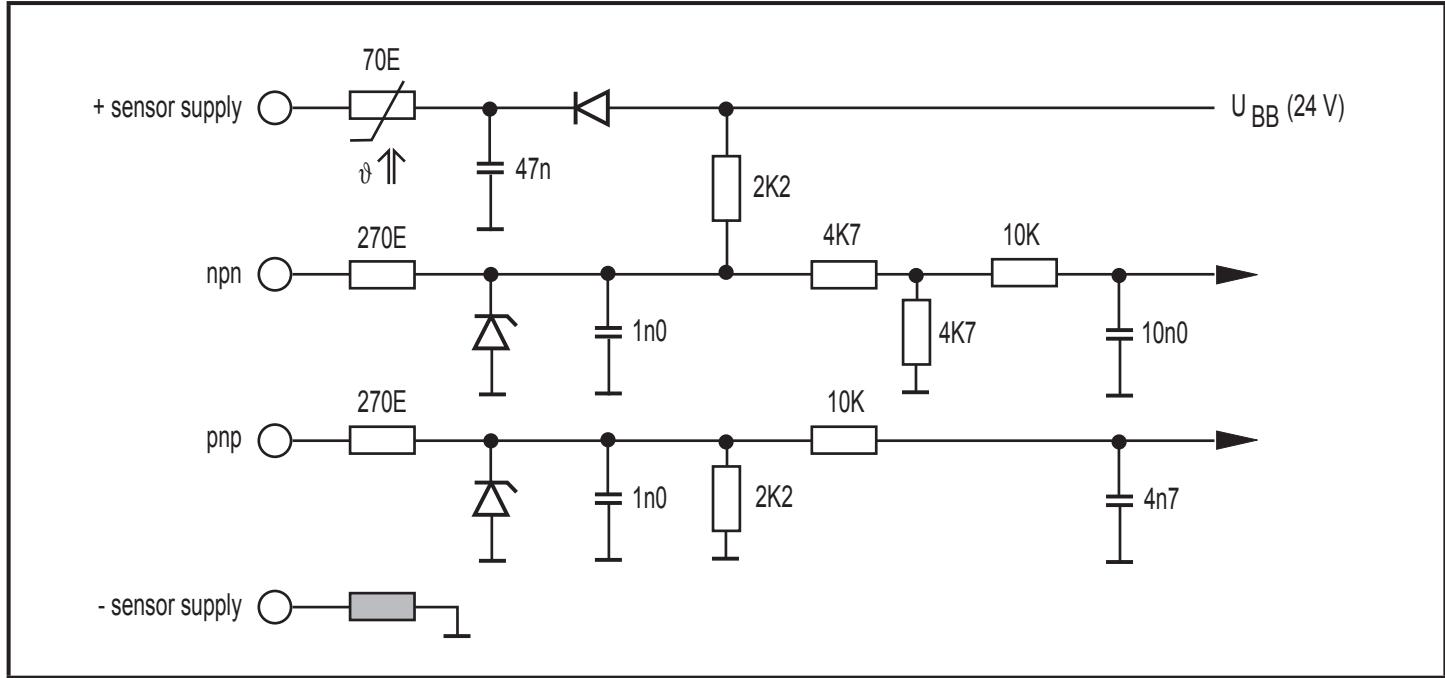
6.3.2 Reset inputs (reset 1 and 2)

The start-up delay can be started or a saved error can be reset via the reset inputs (terminals 17/18).

- The internal +24 V DC voltage (terminal 5) or an external +24 V DC voltage is connected with terminal 17 or 18 via a closing contact.

Reset for output 1 = terminal 17

Reset for output 2 = terminal 18


- If an external voltage is used, the negative reference point of this voltage must be connected to terminal 1 of the monitor.

When the contact is opened (+24 V DC no longer applied), the start-up delay or the memory reset starts.

A +24 V DC continuous signal leads to a permanent bridging of the monitoring, i.e. the same state as during the start-up delay is indicated. When the voltage is no longer applied and the set start-up delay has elapsed, monitoring starts.

6.3.3 Typical input circuit F...-x

6.4 Outputs

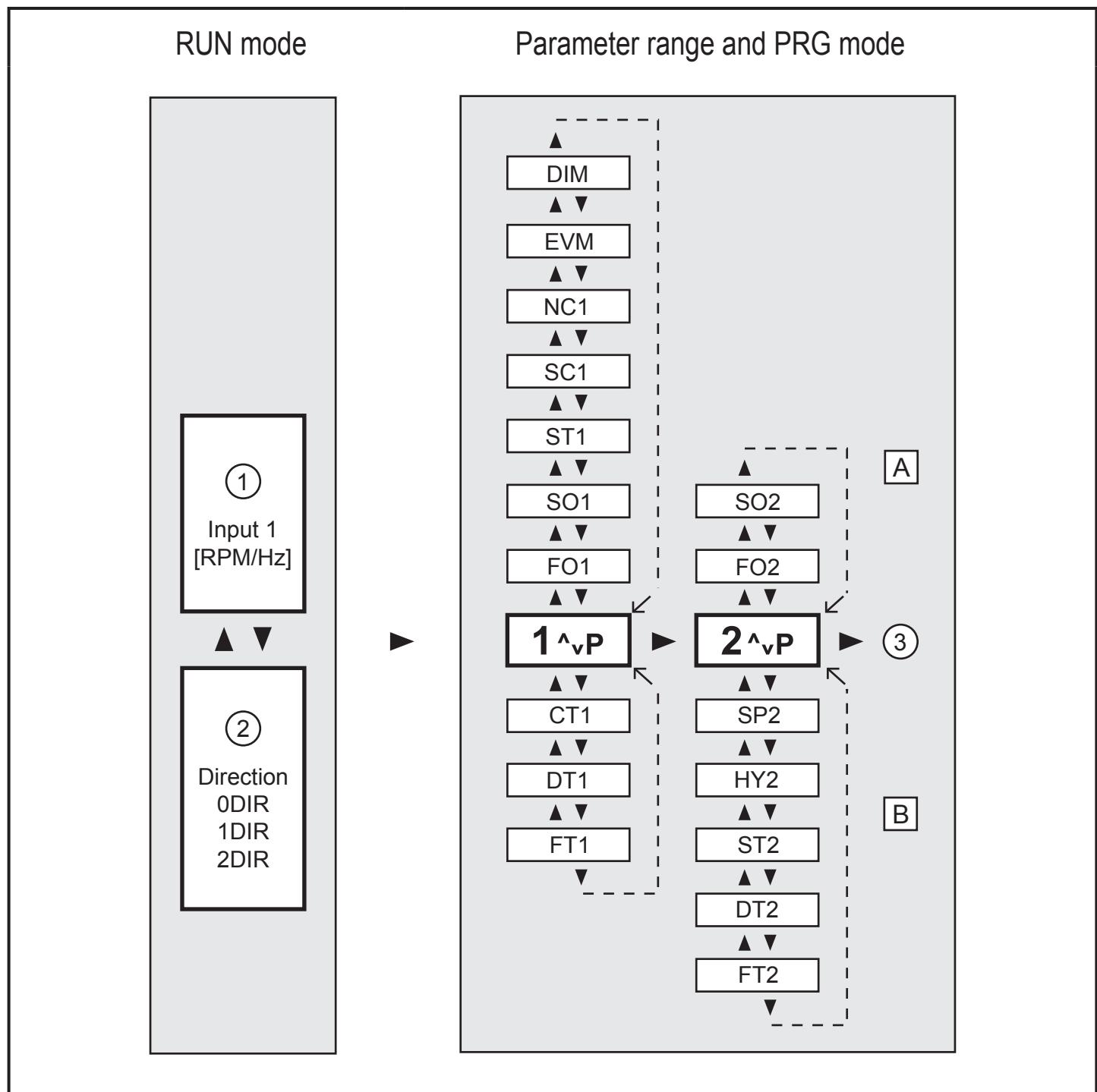
6.4.1 Relay outputs (Out1, 2)

- To prevent excessive wear and to comply with the EMC standards, interference suppression of the contacts is required for switching inductive loads.

WARNING

If the device is operated on an AC supply (terminals 7/8) this must use the same supply cable as the voltage supply to switch an AC voltage via the relay outputs.

- If the relay outputs are used for switching very small currents (e.g. PLC inputs), considerable contact resistance can arise. In this case use the transistor outputs.


UK

6.4.2 Transistor outputs (Out1, 2)

- The transistor outputs need an external voltage of +24 V DC on terminal 3.
- Connect the reference point (GND) of the external power supply to terminal 1 of the monitor. Otherwise no switching operation is possible.
- The SELV criteria (safety extra-low voltage) must be met for the DC supply of the transistor outputs.
- The DC supply cable L+ (terminal 3) must be protected externally with a 315 mA T fuse (5 x 20 mm or similar).

7 Navigation and parameter overview

The pushbuttons [▲] / [▼] and [Enter/▶] are used for the navigation, entry of values and acknowledgement within the parameters arranged in columns.

- 1: Display: rotational speed / input frequency on input 1
- 2: Display: rotational direction
0DIR = no rotational direction or pulse sequence detected
1DIR = IN 1 before IN 2
2DIR = IN 2 before IN 1
- 3: Back to the RUN mode

A: System parameters
B: Application parameters

7.1 System parameters

7.1.1 FO1

Function Output 1 (switching function for output 1, direction monitoring)

1	<p>Signalled state IN 1 before IN 2 Relay is energised (transistor output switched) when pulse sequence is 'IN 1 before IN 2'. Once an order of pulses has been detected correctly the output remains in this state until the direction is changed. For the pulse sequence 'IN 2 before IN 1' the relay de-energises and the output transistor is blocked (error message).</p>
2	<p>Signalled state IN 2 before IN 1 Relay is energised (transistor output switched) when pulse sequence is 'IN 2 before IN 1'. Once an order of pulses has been detected correctly the output remains in this state until the direction is changed. For the pulse sequence 'IN 1 before IN 2' the relay de-energises and the output transistor is blocked (error message).</p>
Values	1, 2
Default value	1

7.1.2 FO2

Function Output 2 (switching function output 2, rotational speed monitoring)

1	Relay energised (transistor output switched) when the current value is below the switch point SP2 (signalled state: "minimum speed"/"blocked").
2	Relay de-energised (transistor output blocked) when the current value is below the switch point SP2 (error message: "underspeed "/"blocked").
3	Relay energised (transistor output switched) when the current value is above the switch point SP2 (signalled state: "rotational speed reached").
4	Relay de-energised (transistor output blocked) when the current value is above the switch point SP2 (error message: "overspeed").
5	Relay is energised (transistor output switched) within a frequency range (acceptable range).
6	Relay is de-energised (transistor output blocked) within the frequency range. With the functions 5 and 6 a frequency range above and below the switch point SP2 is defined in connection with the parameter HY2 (hysteresis).
$SP2 = (f_{\max} + f_{\min}) \div 2$	
$HY = ((SP - SP_{\min}) \div SP) \times 100 [\%]$	

Values	1...6
Default value	FO1 = 2

7.1.3 SOx

Store Output (latching function outputs 1/2)

When this parameter is active, the respective output does not switch back automatically but must be reset.

Values	0 = inactive
	1 = front reset ([Enter/▶] > 3 s)
	2 = front reset and external reset
Default values	0 = (inactive)

7.1.4 ST1

Start-Up Delay Time for Out 1

Enables the suppression of error messages when a plant is started.

When the unit has been switched on or when the 24 V signal has been removed from the reset input, output 1 is in the following state for the time set here:

- ON for the time set, if SC1 = 2 and ST1 > 0.0 s.
(presetting a direction signal)
- OFF for the time set, if SC1 = 1 and ST1 > 0.0 s.
(suppression of a direction signal)

Values	0.0...1000.0 s
Default value	0.0 (no start-up delay)

7.1.5 SC1

Start up Conditions for Out 1

Determines the start up behaviour for output 1 in connection with the switching function (FO1) and the start-up delay time (ST1).

Switching status output 1

if SC1 = 1	during ST1	after ST1		
		IN 1 before IN 2	IN 2 before IN 1	no pulses
FO1 = 1	OFF	ON	remains OFF	OFF
		remains OFF	ON	

if SC1 = 2	during ST1	after ST1		
		IN 1 before IN 2	IN 2 before IN 1	no pulses
FO1 = 1	ON	remains ON	switches OFF	switches OFF
FO1 = 2		switches OFF	remains ON	
Values	1, 2			
Default value	1			

7.1.6 NC1

Number of Cams

UK

Number of cams detected per revolution. On the basis of this value the monitor calculates the rotational speed (measured frequency \div NCx = displayed speed in RPM). For frequency measurements NCx = 1 should remain set.

Values	1...999
Default values	1

7.1.7 EVM

Evaluation Mode

0	<p>"Fast" detection of direction</p> <p>The output switches on with the first input pulse.</p> <p>If the pulse sequence changes, the output switches back immediately.</p> <p>If a sensor fails, the output changes with each damping and undamping of the remaining sensor.</p>
1	<p>"Safe" detection of direction</p> <p>The output does not switch until the second sensor has also sent a pulse to the respective input.</p> <p>If the pulse sequence changes, the output switches back immediately.</p> <p>If a sensor fails, the set relay de-energises after the first pulse of the remaining sensor and remains de-energised (transistor output blocked).</p>
Values	0, 1
Default value	1 ("safe" detection of direction)

7.1.8 DIM

Dimension (display format)

Indication in Hz or RPM (revolutions per minute).

When a new unit is selected, the monitor converts all existing values into the new unit!

Values	0 = RPM
	1 = Hz
Default value	0 = RPM

7.1.9 VER

Software version

The installed software version is displayed (5-digit number with abbreviation VCO).

7.2 Application parameters

7.2.1 CT1

Cycle Time for Out 1 (reset time for output 1)

With active reset time the output switches back when the set time has elapsed, if no direction-dependent pulses have been detected within the reset time.

Values	0.0...1000.0 s
Default value	0.0 (reset time not active).

7.2.2 DTx

Delay Time (for outputs 1/2)

Enables a delayed switching of the outputs 1/2.

The respective output switches only if the current value is above or below the switch point for more than the time set here.

Values	0.0...1000.0 s
Default values	0.0 (no delay time)

7.2.3 FTx

Fleeting Time (for outputs 1/2)

If an event occurs, the output changes its state during the set time and then switches back to the initial state.

Values	0.0...1000.0 s
Default values	0.0 (fleeting time not active)

7.2.4 SP2

Switch Point (switch point output 2, speed monitoring)

Value at which output 2 changes its switching state according to switching function FO2.	
Values	0.1 ... 1000.0 Hz or 1 ... 60,000 RPM (unit depends on DIM)
Default value	500 = RPM

UK

7.2.5 HY2

Hysteresis (hysteresis for switch point SP2)

The hysteresis value determines the difference between the switch-off point and the switch point SP2. Prevents a possible chattering of the switching output. In connection with the switching functions 5 and 6 (FO2) an acceptable range or an error range can be defined.	
Values	0.0...1000.0 % of the value for SP2
Default value	5.0

7.2.6 ST2

Start-Up Delay Time for Out 2

Enables the suppression of error messages when a plant is started. When the device is switched on or when the 24 V signal is removed from the reset input, the output for the time set here is in the "good" state (= no fault).	
Values	0.0...1000.0 s
Default value	0.0 (no start-up delay)

8 Programming

⚠ WARNING

If programming takes place during operation, dangerous contact voltage may occur. Therefore ensure that programming is done by a qualified electrician.

! Parameter changes during operation, especially changes to the switching function and the switch points can lead to malfunction in the plant. Therefore disconnect it during the change and then check the function.

Programming consists of 6 steps:

1. Change from the RUN mode to the parameter range 1 or 2	[Enter/▶]
2. Selection of the requested parameter (FOx, SOx, NCx, etc.)	[▲] / [▼]
3. Change to the PRG mode	[Enter/▶]
4. Setting or changing the parameter value	[▲] / [▼]
5. Acknowledgement of the set parameter value	[Enter/▶] > 3 s
6. Return to the RUN mode	[Enter/▶] > 3 s

8.1 Programming example DT1 (Delay Time, output 1)

Operation	Display
Change from the RUN mode to the parameter range (here 1)	
► Briefly press [Enter/▶] once. ► The 1st parameter range is displayed.	CH1 RUN 1 [^] vP
Selection of the requested parameter (here DT1)	
► Press the [▼] button until the parameter DT1 is displayed with the currently set value (here default value 0.0).	CH1 RUN 0.0 DT1
Change to the PRG mode	
► Briefly press [Enter/▶] once. ► The unit is in the programming mode. ► PRG indicator visible, parameter abbreviation flashes.	CH1 RUN PRG 0.0 DT1

Setting or changing the parameter value

► Press [▲] / [▼] until the requested parameter value is displayed (→ 8.2.3 Numerical entries).

Acknowledgement of the set parameter value

► Press [Enter/▶] until the parameter abbreviation no longer flashes and the indicator PRG has disappeared.
> The new parameter value is indicated and effective.

Return to the RUN mode

► Press [Enter/▶] for about 3 s or wait for the time-out function (approx. 15 s).
> The unit is again in the RUN mode, the current value is indicated.

8.2 Notes on programming

8.2.1 RUN mode

During programming the unit internally remains in the RUN mode (RUN indicator visible).

This means that until a new value is acknowledged with [Enter/▶], the unit carries out its monitoring function on the basis of the previously set parameters and switches the relay and transistor outputs accordingly.

The monitoring function of the monitor is deactivated by continuously pressing [Enter/▶] in the RUN mode. The deactivation is effective as long as the button is pressed.

8.2.2 Time Out function

If during programming no pushbutton is pressed for approx. 15 s, this is seen as a cancellation.

Parameter changes which are not acknowledged with [Enter/▶] are rejected. The previously set parameter value is restored and remains effective for the monitoring functions.

8.2.3 Numerical entries

► Press [▲] or [▼] and hold it.

The smallest decade becomes active and is counted up or down depending on the selected pushbutton (e.g. 1, 2, 3,...0). Then comes the next decade, etc.

As soon as the pushbutton is released, the active decade flashes. It is set by pressing [▲] or [▼] several times. The preceding decade then flashes and can be set.

8.2.4 Factory Reset

The factory default values can be restored by pressing [▲] and [▼] simultaneously during power on. All previously entered parameter values are lost.

8.2.5 KEY function (locking)

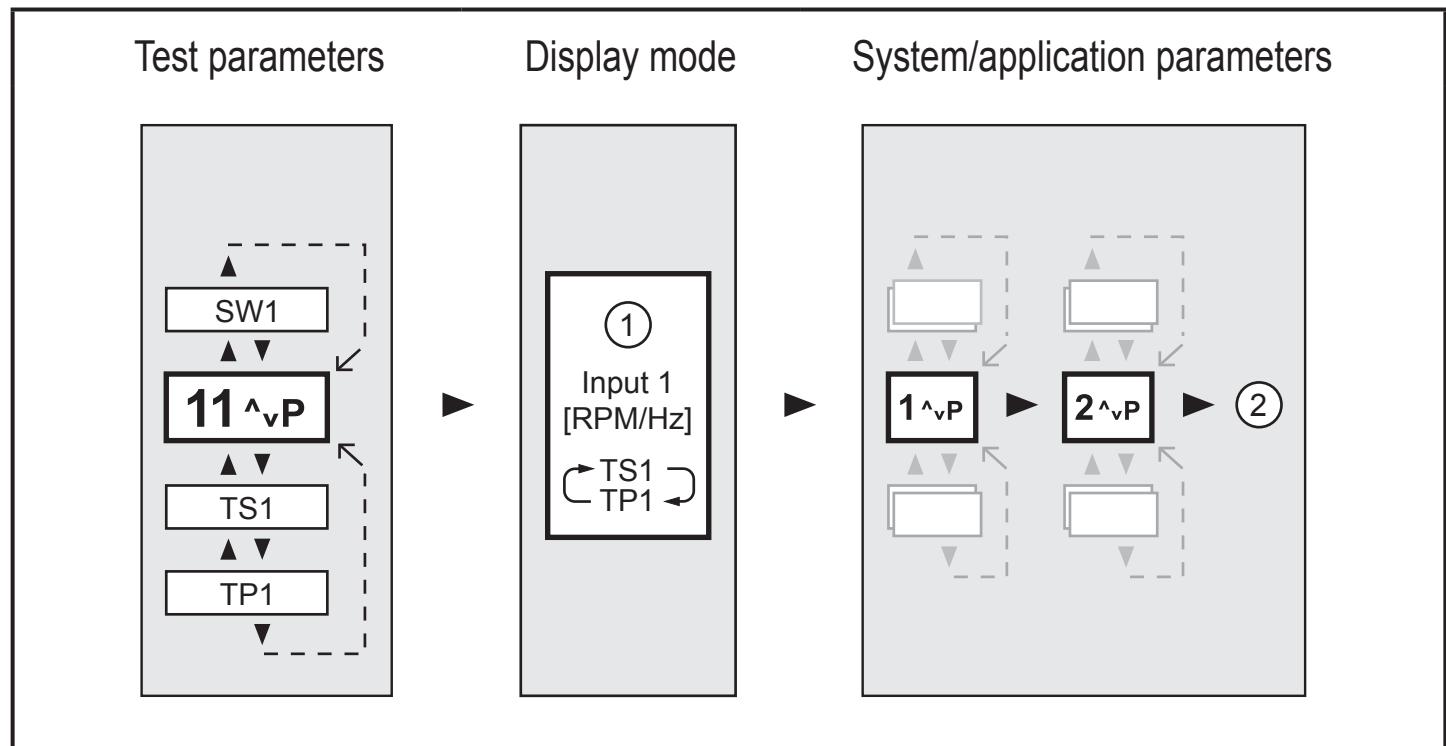
The unit can be locked to prevent incorrect entries.

After locking, only the actual value indication can be switched with the [▲] and [▼] buttons. Parameter range and PRG mode can no longer be selected.

Locking	Unlocking
<ul style="list-style-type: none">▶ Press [▲] and [▼] simultaneously and hold them pressed.> The KEY indicator flashes.▶ Release the pushbuttons when the KEY indicator is continuously indicated.	<ul style="list-style-type: none">▶ Press [▲] and [▼] simultaneously and hold them pressed.> The KEY indicator flashes.▶ Release the pushbuttons when the KEY indicator is no longer indicated.

9 Test mode

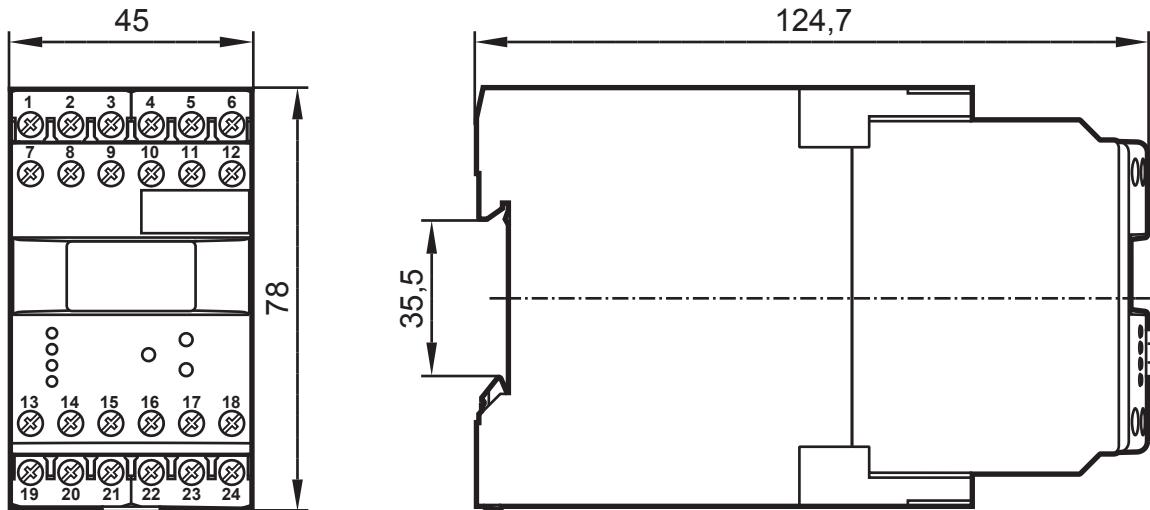
In the test mode the rotational speed control of the monitor can be checked, set and stored without any connected pulse pick-up. Input 1 of the monitor runs through a freely definable frequency range and switches output 2 according to the selected switching function and switch points.


9.1 Activate the test mode

- ▶ Apply the operating voltage and press [Enter/▶] simultaneously.
- > The display indicates the parameter range 11 and "TST".
- > In addition to the system and application parameters, the parameters for the test frequencies are available.

9.2 Terminate the test mode

- ▶ Switch off the unit.


9.3 Test parameters

1: Test frequency input 1
 2: Back to the test parameters

SW1	Sweep on input 1	
Change of speed of the test frequency		
Values		1...5 (1 = fast, 5 = slow)
Default value		1
TS1	Test Start on input 1	
Initial value of the test frequency		
Values		1...60,000 RPM or 0.1...1000.0 Hz
Default value		50 = RPM
TP1	Test Stop on input 1	
Final value of the test frequency		
Values		1...60,000 RPM or 0.1...1000.0 Hz
Default value		1500 = RPM

10 Scale drawing

11 Technical data

11.1 Overview

Art. no.	DR2503
Monitor type	FD-1
Supply voltage	
Frequency range	see type label
Power consumption	
Sensor types	PNP/NPN: NAMUR
Sensor supply	24 V DC
Input frequency	
for speed monitoring	≤ 5 kHz
for direction monitoring	≤ 1 kHz
Relay outputs	2 changeover contacts; potential free
Switching current	≤ 6 A
Switching voltage	≤ 250 V AC; B300, R300
Transistor outputs	PNP switched; externally supplied
Switching current	≤ 15 mA; short-circuit proof
Switching voltage	24 V DC (± 20 %)
Protection housing / terminals	IP 50 / IP 20
Ambient temperature	-40...60 °C
Storage temperature	-40...85 °C

Art. no.	DR2503
Max. relative air humidity	80 % (31 °C) linearly decreasing to 50 % (40 °C)
Maximum operating altitude	2000 m above sea level
Connection	21 dual-chamber terminals; 2 x 2.5 mm ² (AWG 14)
cULus test conditions	housing dimensions for temperature rise test: 200 x 200 x 150 mm

UK

Data sheets can be found at:

www.ifm.com → Data sheet search → Article number

11.2 Approvals / standards

EC declarations of conformity, approvals etc. can be downloaded at:

www.ifm.com → Data sheet search → Article number → More information

12 Maintenance, repair, disposal

The device is maintenance-free.

- ▶ Do not open the housing as the device does not contain any components which can be repaired by the user. The device must only be repaired by the manufacturer.
- ▶ Dispose of the device in accordance with the national environmental regulations.